
Augmenting Appearance-Based Localization and
Navigation using Belief Update

George Chrysanthakopoulos
Microsoft Research
One Microsoft Way

Redmond, WA
georgioc@microsoft.com

Guy Shani
Information Systems Engineering

Ben Gurion University
Beer Sheva, Israel

shanigu@bgu.ac.il

ABSTRACT
Appearance-based localization compares the current image taken
from a robot’s camera to a set of pre-recorded images in order to
estimate the current location of the robot. Such techniques often
maintain a graph of images, modeling the dynamics of the image
sequence. This graph is used to navigate in the space of images.

In this paper we bring a set of techniques together, including
Partially-Observable Markov Decision Processes, hierarchical state
representations, visual homing, human-robot interactions, and so
forth, into the appearance-based approach. Our approach provides
a complete solution to the deployment of a robot in a relatively
small environment, such as a house, or a work place, allowing the
robot to robustly navigate the environment after minimal training.

We demonstrate our approach in two environments using a real
robot, showing how after a short training session, the robot is able
to navigate well in the environment.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
Localization, Navigation, Topological SLAM, Hierarchical mod-
els, POMDP

1. INTRODUCTION
Simple autonomous robots can provide important services for

humans. For example, disabled people living in solitary can use
such robots to communicate with some helping agency in case of
a distress, and patrolling robots can be used to monitor workplaces
during off-work hours. A crucial component of accomplishing such
tasks is the ability to localize — estimate the current location of the
robot, and navigate — reliably reach locations in the environment.

For such robots to become common we must provide affordable
solutions. Current robust techniques for robot localization and nav-
igation employ high-level laser sensors that provide reliable read-
ing of surrounding objects [6]. However, such high-end lasers are
typically expensive, and are therefore inappropriate for our task.
Cite as: Augmenting Appearance-Based Localization and Navigation us-
ing Belief Update, George Chrysanthakopoulos and Guy Shani, Proc. of
9th Int. Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2010), van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.),
May, 10–14, 2010, Toronto, Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Another, inexpensive alternative is to use cameras. While mod-
ern cameras provide excellent images for a low cost, using images
for localization and navigation is challenging because images do
not directly provide metric information about the environment. As
such, we can avoid maintaining a metric map of the environment,
and operate directly in image space. These methods, known as
topological navigation [25] construct a graph of locations, where
edges denote direct access between location nodes. Locations can
be identified by sets of sensor readings, typically pre-recorded im-
ages from a camera assigned to specific locations. It is also com-
mon to replace the image representation by a condensed set of fea-
tures that were extracted from the image, to support rapid similarity
computations. Then, the robot can navigate from image to image
using a technique called visual homing [1].

A well known problem that arises when using imperfect sensors
is the perceptual aliasing problem, where multiple locations appear
similar. One method for reducing the perceptual aliasing is by using
the environment dynamics to constraint the set of locations where
the robot can currently be, given its previous location.

A natural method for defining such environmental probabilistic
constraints, specifically tailored for imperfect sensors, is the Par-
tially Observable Markov Decision Process (POMDP), a model for
describing environments where the true state of the system, i.e., the
robot location, is not directly observable. POMDPs provide meth-
ods for tracking a probability distribution over the robot where-
abouts, as well as techniques for action selection.

In this paper we bring together a set of techniques into a com-
plete approach to the mapping, localization, and navigation prob-
lem in small closed environments; When our robot is introduced
into a new environment, a human is giving the robot a partial ‘tour’
of the environment, visiting a set of locations, and labeling them by
names. Throughout the tour the robot will collect images of the lo-
cations and the paths between locations, thus building a topological
map. We assume a two-layered map; The higher layer is a graph
where vertexes represent locations and edges represent paths. For
paths, we maintain a low level image sequence, that will later allow
us to trace the path.

To provide a robust localization estimation we employ POMDP
belief tracking, allowing us to measure and update the probability
of each possible robot location, given all previous observations. We
maintain both a high level belief over the vertexes and edges of the
graph, and a low level belief on the current location within each
edge. When the robot is given a command to navigate to a destina-
tion, it computes the cost of navigation from each location. Then,
decisions are made based on the expected cost of actions, and the
robot navigates to a destination attempting to minimize the cost,
whether it is time or energy consumption.

This paper provides a high level overview of our approach, fo-

559

559-566



cusing on a few key components of the system. We demonstrate
the complete approach on a real robot navigating in home spaces.

As is always the case with implemented systems, in many cases
the technical details of the implementation make the difference be-
tween a working and a useless robot. Still, our approach is not
perfect. Some components of our robot, such as the mechanical
driving system, and the ad-hoc policy that we use, are still subopti-
mal. Towards the end of the paper, we discuss the shortcomings of
our approach, and suggest several extensions to improve it.

2. BACKGROUND AND RELATED WORK

2.1 Localization and Navigation
Perhaps the most robust method for localization and mapping in

small closed spaces is laser-based SLAM (Simultaneous Localiza-
tion and Mapping, see, e.g. [6]). Such methods construct a metric
map, identifying all obstacles and pathways. Using the computed
metric map, navigation between locations becomes a relatively sim-
ple geometric problem. However, due to the high price of good
laser sensors, and problems with scaling to open spaces, other ap-
proaches were also suggested.

Among these we will focus on the topological navigation ap-
proach [10], where the robot creates a graph where each node is
composed of a set of sensor readings, and edges between two nodes
denote direct reachability. Given the graph, the agent can navigate
to a destination by traversing the graph, each time attempting to re-
produce the sensor readings associated with the next node. Many
topological navigation methods use images from cameras [25].

One possible method for moving between nodes associated with
sensor readings is called visual homing [1]. In this technique the
robot tries to achieve the same sensor readings as some pre-captured
target readings. For example, in the case of images, we could com-
pute a 2D transformation between two images — the current image
captured by the robot camera and the target image. Given this trans-
formation, we can compute an angular direction that would reduce
the magnitude of the transformation, thus causing the current image
to look more like the target image.

As working directly with high dimensional sensor readings, such
as images, is computationally intensive, a common approach is to
extract a set of features, or interest points, from the images [8].
Then, we can compare two images through the sets of features in
the two images. This comparison can be invariant to scale, distance,
rotation, and other transformations in the image. By constraining
the number of features for each image we can tradeoff accuracy for
speed.

Appearance-based localization [11, 19, 4] uses images to repre-
sent locations and uses image comparisons to detect whether the
current captured image can be associated with a known location.
Such methods are typically augmented using some motion models,
and topological information to restrict the space of candidate loca-
tions. The images and topology can be captured at a training phase
by a human guiding the robot through the environment [14].

2.2 POMDPs
A robot navigating through an environment using imperfect sen-

sors and motors can be modeled by a Partially Observable Markov
Decision Process (POMDP) [21]. A goal-based POMDP is a tu-
ple < S, A, tr, C, G, Ω, O, b0 >. S is the state space. Each state
must encapsulate all the relevant information about the environ-
ment required to make a decision. A is a set of actions. The agent
influences the environment by executing actions. Actions effects
are stochastic, and tr(s, a, s′) = pr(st+1 = s′|st = s, at = a)
is the probability of executing a in state s and transitioning to state

s′. C(s, a) is a cost function associating a cost with a state and
an action. G ⊆ S is a set of goal states, specifying the desirable
destination of the navigation. Ω is a set of observations, or possible
sensor readings. O(s, o) = pr(ot = o|st = s) is the probability
of observing o in state s. b0 is a probability distribution over start
states.

As in a POMDP the real world state s is not directly observ-
able, we typically maintain a belief — a probability distribution
over possible world states. Given a current belief b, an action a,
and an observation o, the next belief b′ can be computed by:

b
′(s′) =

O(s′, o)
∑

s∈S b(s)tr(s, a, s′)

κ
(1)

where κ = pr(ot+1 = o|bt = b, at = a) is a normalization factor.
The optimal policy of the POMDP can be represented as a mapping
from beliefs to actions [21].

Indeed, POMDPs were used many times in the past for model-
ing robot navigation problems. Kröse et al. [11] use a POMDP
model for localization in the space of image features. They exper-
imented with various estimators for the needed observation prob-
abilities. Spaan and Vlassis [23] demonstrate the performance of
a point-based solver on a robot navigation task, using images for
observations. Theocharous et al. [24] and Foka et al. [7] automat-
ically learn an hierarchical POMDP representation of the environ-
ment from either maps or observations.

3. HIERARCHICAL TOPOLOGICAL MODEL
In this paper we use a topological representation of the environ-

ment. We suggest a two-layered representation — on the upper
layer, vertexes denote locations in the environment, and edges de-
note paths between locations. On the lower layer, each edge is rep-
resented by a sequence of images. This hierarchical representation
[20] allows us to maintain both an abstract representation for mak-
ing high level navigation decision, and an explicit low level path
representation that we can translate into motion commands.

3.1 Upper layer topology
In the upper layer topology we capture all the known locations

in the environment as nodes. Each node is associated with a set
of images that were taken in that location. Thus, the set of images
becomes the identifying sensor readings for the location.

We define a POMDP model over the graph G =< U, E >. Each
node and edge in the graph becomes a state, i.e., S = V ∪ E. In
the upcoming sections, we will use the notation s to denote both
locations and edges, but sometime use e (e.g., b(e) instead of b(s))
where the state can only be an edge.

We allow the following set of high level navigation commands:
RotateAndFindEdge — turn around without moving forward, look-

ing for a specific edge, given as a parameter to the action.
Navigate — navigate along an edge (path). This action is appli-

cable only for edges.
Explore — heuristically move towards the open spaces. This

command can be used when the robot is unsure of its location, or
when the robot is stuck and cannot move due to obstacles.

DoNothing — a no-op command, typically used only when the
robot has reached its destination and awaits a new command.

Most of these commands move the robot stochastically between
states. We define the transition probabilities through graphical re-
lations between states. For example, if s is a location, s′ is an
edge moving out of s, the robot executes the action RotateAndFind-
Edge with sg as the goal edge, then tr(s, a, s′) = p > 0, and
tr(s, a, sg) > tr(s, a, s). For any other state, location or edge, not

560



going out of s, the transition probability is 0. We support the fol-
lowing graphical relations: origin location of edge, target location
of edge, edge going out of location, edge entering a location, edges
with shared origin, edges with shared destination, and reverse edge.

We manually tune the transition probabilities to fit the domains
we experimented with, as learning the probabilities from experi-
ence may require many trials, and we require the robot to be de-
ployed rapidly in real environments.

We choose to model action costs through execution time. Such
costs can be computed directly from the sequences of captured im-
ages and the robot properties. For example, if we maintain time
stamps for images, we can define the cost of a navigate action based
on the time difference between the first and last image. It is also
straight forward to compute the time that it takes the robot to com-
plete a full 360◦ rotation. We will later discuss (Section 7) how we
use these costs to create a navigation policy.

The observation set Ω is the set of all possible images. Clearly,
we cannot maintain this set explicitly or iterate over it. To define an
observation function, we use an image similarity engine sim(i, i′).
While we later (Section 5) discuss the image similarity engine in
details, from the POMDP perspective we only assume that we are
given an engine that, given two images, provides a similarity score.
We use this engine to compute a similarity score for an image and
a state:

sim(s, i) = max
i′∈s

sim(i, i′) (2)

maximizing over all the images i′ associated with a state s whether
it is a location or a path. We use the max as the aggregator rather
than other options (e.g., the mean similarity of images), as images
are taken from different angles in a location, or from different posi-
tions along a path. Therefore, it is reasonable that only one or two
images from each state will match the captured image.

When computing a belief update (Equation 1) we use the state-
image similarity score instead of the observation probability, thus
making the assumption that sim(s, i) ∝ pr(i|s). The advantage
of this approach is that we do not need to compute κ = pr(o|b, a),
as we can simply normalize the new belief state after computing
the new pseudo-belief in the numerator of Equation 1 using the
similarity metric.

3.2 Lower layer edge representation
For edges, we capture a sequence of images taken when the edge

is introduced. This sequence can be used both for localizing within
an edge, and for navigation along an edge. We maintain a local
belief over the images within an edge: b(i|e) — the probability
that we are currently at image i given that we are within edge e.

To compute this local belief we use a POMDP model for each
edge, where the states are the images on that edge. The actions are
moving forward through the edge, or not (any other action). When
we move along the edge, for each image the probability of remain-
ing on that image, or transitioning to future images is computed
based on the distance (whether in metric space or in time) between
images and the current velocity of the robot. For example, when the
robot moves faster and the images are nearer, the transition proba-
bility to the next image in the sequence is relatively high. When the
robot moves slower, such as when it is moving around corners, the
transition probability is reduced accordingly. As with the higher
layer model, probabilities are manually tuned currently.

In addition, belief could be injected from other graph elements,
such as other paths and locations. For example, when we execute a
RotateAndFindEdge action in a location s, we may transition into
an intersecting edge s′. In this case we compute the new belief

mass that has transitioned from s into s′:

b(s)tr(s, a, s
′)O(s′, o) (3)

This new belief mass is injected into the edge appropriately. For
example, when the edge is a path going out of a location, the new
belief mass is injected uniformly into the first 5% of the image
sequence. When the belief mass is from another edge, such as an
edge with a shared origin, the new belief mass is spread uniformly
along the edge.

To properly balance between the new belief mass and the exist-
ing belief mass on the edge, the local beliefs are first scaled to the
overall belief using b(i|e)·b(e), then the new belief mass is injected
from all other locations. Afterwards, the inner edge transition prob-
abilities are used to compute the next belief state.

4. LEARNING THE MODEL
When a robot is deployed in a new environment, we must acquire

or learn the two-layered model for that environment, i.e. the impor-
tant locations and the paths between them. As we are interested in
real robots for household tasks, it is crucial that the learning phase
will have a minimal cost.

We use here a teaching episode, where the robot follows a hu-
man teacher through a tour of the environment [14, 16]. Along the
tour, the human will specify important locations in the house. For
example, the human may say along the tour, “this is the kitchen”.
The robot will then add a new location to the model, labeling it as
“kitchen”, and will spin around, taking a set of images associated
with the new location.

When the robot follows the human, it records the images along
the path. When a new location is introduced, the robot sets the
recorded path as an edge between the previous location and the
new one.

5. IMAGE SIMILARITY ENGINE
The image similarity engine is designed to rapidly provide a

ranked list of N images from the pre-recorded image dataset that
best match a given image. For each image the engine computes a
similarity score. While we focus here on image similarity, the same
methods can apply to other types of sensors, such as depth cameras
[26]. Our method uses a two pass algorithm (see e.g. [9]). On the
first pass, images that are substantially different are filtered based
on crude image signatures leaving a relatively small candidate set
C. On the second pass, we compare features that were extracted
from the images in C, to provide a matching score.

While we strive to reach high accuracy in relating new images
to previously observed images, our approach does not require an
exact match, and can easily recover from identification errors. Our
belief update mechanism takes into consideration the noise in the
sensor, whether that noise comes from image blur or from improper
feature detection. In both cases, the belief update only requires that
the noise will not bias the selection consistently towards the wrong
images. As long as the similarity scores for the truly similar images
is in general higher, the repeated belief update will not be affected
by the noisy observations.

5.1 Feature detection
In this work we use an Harris corner detector [8, 15] to extract

features from the image. This detector uses the gradient from each
pixel to its neighbors to detect significant changes that typically
correspond to corners in the image. We rank the features by their
strength, and maintain for each image only the top 50 features. For
each feature we maintain a feature descriptor vector, requiring 36

561



bytes per descriptor containing the gradients between neighboring
pixels. The resulting features are relatively robust to scale, orienta-
tion, and illumination.

Our algorithm, however, is oblivious to the choice of feature de-
tector. We have also experimented with MSER [13], SIFT [12], and
FAST [22] detectors, all providing similar results. We compared
all detectors on the University of Kentucky image benchmark [17],
and the Harris detector provided the best performance. We also
conducted additional experiments using the web cam that is used
in our robot, and again the Harris detector provided superior per-
formance and was therefore chosen for our application.

5.2 First pass — local and global signatures
When an image is introduced into the database, we compute an

image signature [18], based on global image properties, such as
color histograms. We use these properties to compute a property
vector that will be used as the signature of the image.

We use the following signature components:
Color histogram: We convert the image to YCbCr color-space

and create a histogram of pixel intensity distributions in each color
channel. The histogram provides an image-wide signature, requir-
ing 64 bytes per color channel. This provides a global description
of the entire image.

Thumbnail: We reduce the image to an 8×6 pixel image, across
all color channels. We represent this thumbnail using a vector of
length 8 × 6 × 3. This vector provides another global description
of the image.

Feature summary: As comparing the Harris features directly is
relatively costly, we synthesize a summary of the set of features, by
computing the mean and variance of the feature descriptor vectors,
thus obtaining two vectors of size 36 bytes. As the Harris features
are computed locally, this signature can signal that similar objects
appear in the two images, but not whether the objects are located
in the same place in the two images. This signature thus provides
local information about objects in the image.

Even though we currently use 3 signatures, our method can use
more signatures as long as the signature is small and requires very
little computation for comparing the signatures. We require that for
each such signature we can compute a numeric distance between
the two images. To combine the different signature distances into
a single distance metric, we use the weighted sum of differences.
That is, we maintain for each signature type t a weight wt, and
the overall distance is d(i, i′) =

∑
t wtdt(i, i

′) where dt is the
distance between the two signatures of type t in image i and image
i′.

The weights wt are environment dependant. It is likely that
in different environments different signature types will be more
discriminative. We use a gradient descent approach to learn the
weights that best discriminate between images associated to dif-
ferent states, while maintaining a small distance between images
from the same state. After learning the weights from the images,
the weights are fixed for the localization and navigation.

During the first pass, we compute the signature distance d(i, i′)
of the queried image i to all other images i′ in the database, using
the method above. As the signature vector is extremely short (we
use 364 bytes per image), this computation is very fast, and we can
compare 106 images per second on the robot’s restricted hardware.

For our application it is important that we compute the similar-
ity of the query image to all states in our topology. Therefore, in
addition to the N best matches among all images, we add the best
match from every state s to C.

5.3 Second pass — corner features

As we explained above, we extract 50 Harris features from each
image. In the second pass, we use a bag of features approach, with
a KD-tree (see, e.g. [2]).

We compare the the query image — the current image received
from the robot’s camera — with each image in the candidate set. To
compare two images we use the set of Harris features only. For each
feature in the query image we find the best matching feature in the
candidate image and compute their distance. This approach may
select the same feature from the candidate image multiple times,
but this is appropriate for the Harris features that tend in many cases
to be grouped around an informative corner. It is unimportant in
this case to distinguish between the different corner features.

We then sum the distances between each feature and its best
match, and use that as an error estimation efeatures(i, i

′). Even
though the comparison of corner features results in a highly accu-
rate image matching, the information in the cruder signatures is also
valuable. We therefore combine the information from all the signa-
tures together to form a final error estimation e(i, i′) by a weighted
sum of all the errors from the various components.

We then convert the error into a normalized similarity measure-
ment using:

sim(i, i′) = 1 − e(i, i′) − emin

emax − emin
(4)

where emax = maxi′ e(i, i′) is the maximal error within the can-
didate set and emin = mini′ e(i, i′) is the minimal error.

While this computation is relatively intensive, requiring that we
compute the best match for each feature among all the features in
each image in the candidate set, it is feasible because the most im-
ages are filtered out in the first pass.

The above method computes a similarity between the current im-
age and a set of candidate images. We need to extend the similarity
to the entire image set for the belief computations that we require.
In this work we use the simple method of setting for each image j

not in the candidate set sim(i, j) = 1
2

mini′∈C,s(i′)=s(j) sim(i, i′),
where s(i′) = s(j) if both images are associated with the same
state.

6. LOCALIZATION
Localization is the task of inferring the current location of the

robot within the environment. Our choice of probabilistic model
allows us to be uncertain as to the robot true location [3, 5]. In gen-
eral, we consider localization as obtaining a probability distribution
over locations and paths — the states of our model.

We obtain the probability distribution from the beliefs that are
computed both over the high level and the low level models. The
high level model provides us with an estimation of the probability
of being in any location and path. The low level models provide us
with estimations about our current location within edges, assuming
that the robot is currently on that edge. Thus, we can estimate
the probability that we are currently at any location, and also the
probability of our location along an edge.

When we begin b0 is a uniform distribution over all location
and edges. As the robot executes actions and receives observations
from its camera the belief is updated using Equation 1 as explained
in Section 3.1.

In many cases images from different parts of the environment
can look very similar. For example, in an office environment, many
corridors may look almost identical. However, as the belief update
uses the previous belief and the transition probabilities to compute
the new belief, observing occasionally images that are very similar
to remote locations has a minimal effect. The probability mass will
shift to a new state only if the images from that state are consistently

562



better matched with the current image. In that case the evidence for
a different location may be substantial enough to deduce that the
previous location estimation was incorrect.

The same problem arises when we navigate along an edge. It
often happens that the most similar image along the edge is very
far from the true location of the robot, either forward or backward.
Indeed, the best matched image can move forward or backward
along the edge, not displaying a linear advancement. Again, our
use of transition probabilities and belief updates, do not allow this
erratic position estimates along the edge, and provide a more robust
estimator.

7. NAVIGATION
In our application, a human may instruct the robot to move to a

destination, i.e. “go to the kitchen”. The robot should then robustly
reach the kitchen. While we prefer paths that are less expansive, in
terms of time or effort, we currently focus on robust, not optimal,
navigation.

When the robot receives a command to go to a destination loca-
tion, we set sg , the goal state, to that destination. We then traverse
the graph, setting the cost of each location to be the cost of the min-
imal path from it to sg , using C(s, a), the POMDP cost function,
for estimating local costs.

After setting the costs for reaching sg from any location, we pick
the best action for each state as follows:

Location: We pick an outgoing edge such that the combined cost
for traversing the edge and the cost of the end location for that edge
is minimal. The best action for that location is RotateAndFindEdge
with the minimal edge as its parameter.

Edge: Given our most likely position along the edge, we com-
pute the cost of going forward and going backward, and then con-
tinuing to the goal. If the cost of going forward is less, then the
best action is Navigate. If the cost of going backward (plus the cost
of rotation) is less, then the best action is RotateAndFindEdge with
the reverse edge as its parameter.

Destination: The best action for the destination is DoNothing.
We use a voting scheme, where each state (location and edge)

votes for a single action, weighted by its probability (belief). We
then pick the action that has the highest vote mass and execute it,
breaking ties in favor of Navigate. While such strategies are not
typically optimal in POMDPs, this approach provides rapid, high
quality decisions in our application.

This strategy has shown good results in practice. Still, we are
also investigating the use of point-based value iteration methods
(see, e.g. [23]) for this problem. However, the implementation of
a point-based backup for this problem would not be simple, due
to our inability to iterate over all possible observations, given a
belief state and an action. Even sampling from this space does not
currently seem viable.

7.1 Finding edges
When the chosen action is to rotate in order to find an edge, the

robot starts spinning. For this action, we assign a higher transition
probability for moving into the target edge than to any other edge.
Therefore, even though we may stochastically end up at different
edges, it is more likely that we will end at the edge that we are look-
ing for. As the dynamics (the transition probabilities) are pushing
the robot away from the location it is at, when the robot observes an
image that is similar to the edge images, the belief mass will move
from the location into the edge.

It is possible, though, that even though the robot is estimating its
location correctly, the beginning of the edge is not within sight, or
is blocked by some object. In such a case rotating will not help the

robot to find the beginning of the edge. Therefore, if the robot could
not find the beginning of the edge, we use an exploration heuristic
that moves the robot away from objects. This way, it is more likely
that we will reach a new position within the location from which
the beginning of the edge will become visible.

7.2 Edge navigation
When the vote mass is on the Navigate strategy, we need to send

low level commands to the motors to follow an edge. We choose
the edge with the highest belief that voted for Navigate and select
it as the active edge. The robot will navigate attempting to traverse
the active edge.

As edges contain curves, the robot needs to be able to adjust its
orientation to fit the edge. To do that we use a technique called
visual homing [1]. This technique tries to “achieve” a target image,
by changing the camera position so that the current image will look
more like the target image. The target image for us is the next
image along the path — the pre-recorded sequence of images. We
find the image with the highest belief along the active edge, and
select the image immediately after it as the target image.

Given the target image, we compare the Harris features in the
current image to the features in the target image. We compute an
error along the x axis between the target location of the features
and their current location, as we are interested only on adjustments
along the x axis. Then we compute the motion command to the
engines in the direction that will bring the features to their target
position in the image. The robot also constantly moves forward.

Sometimes, especially when the camera observes a blank wall,
the image may contain no Harris features. In such cases, we use
the motion control that was recorded when the path was captured
instead of the visual homing approach.

As the robot moves forward, belief updates move the belief mass
forward on the edge, assuming that the visual homing technique
managed to “achieve” the target images. Then, the target image
also moves forward within the sequence, and the robot traverses
the edge.

When the image sequence reaches its final 5% images, the high
level transition probabilities of the Navigate command assign a
higher probability to transitioning from the edge to its end loca-
tion. Thus, if the observed images match the end location, the be-
lief mass eventually moves out of the edge into the location, and
the edge traversal is complete.

7.3 Avoiding obstacles
Perhaps the main limitation of appearance-based navigation is

the inability to identify and avoid obstacles. To overcome this, we
use a depth camera [26] — a relatively new technology that allows
us to capture limited depth signatures. The depth camera has a
limited depth and field of view, and thus cannot be easily used in a
regular SLAM algorithm instead of a laser sensor.

However, the depth camera is sufficient for identifying and avoid-
ing close objects. We use the depth camera to obtain a depth profile
in front of the robot. As the camera has a limited field of view, it
may not sense obstacles that are directly in front or on the side of
the robot. We hence try constantly to steer the robot away from ob-
stacles. For example, when navigating through a corridor, the robot
will attempt to move away from the walls towards the center of the
corridor.

We fuse the obstacle avoidance control signal computed from the
depth camera input and the navigation control signal to the motors,
such that the weight of the obstacle avoidance signal grows with
the proximity of the obstacle. When the obstacle is immediate,
the obstacle avoidance signal is dominant, and the robot will move

563



away from the obstacle.

8. IMPLEMENTATION NOTES
For this work we have used the Microsoft Robotics Studio1. This

framework allows developers to create applications on a simulated
environment that imitates the real world closely. Indeed, our de-
veloped approach that worked well in simulation, was afterwards
successfully used on the real robot with negligible changes.

9. EMPIRICAL EVALUATION
We now provide evidence as to the power of our approach. We

begin with a standard evaluation of our vision system, and then
report experiments on navigation and on the complete process of
teaching the robot a new environment, followed by navigation tasks.

9.1 Vision performance
As a powerful yet fast image similarity component is key to the

success of appearance based localization and navigation, we begin
with an evaluation of our similarity engine over the University of
Kentucky benchmark2. This benchmark contains a wide variety of
images, divided into groups of 4 images of the same object. The
task is to find for each object the 4 matching images. Thus, the
highest possible score is 4 and the lowest possible score is 0.

�

���

���

���

���

���

���

��	

��


���

�

� ���� ���� 	��� �����

����� ����� ������

������ ������������

Figure 1: Performance of our image retrieval methods on the
University of Kentucky benchmark. We plot the average num-
ber of images of the same object that were identified (4 at most),
as the number of objects grow.

In the experiment we evaluated both the rapid first stage only
(denoted 1S), and the two stage method (denoted 2S) we use on
our robot. We also compare the use of 50 features (denoted 50F)
and 100 features (denoted 100F) for each image. We trained the
signature weights using gradient descent over the first 1000 images,
and then fixed the weights for the rest of the images.

As we can see from Figure 1, our image comparison method
provides better results, especially as the number of images grow,
than the Visual Words of [17]3. As expected, 2 stages provide bet-
ter results, and more features help. Our method is also very fast,
and queries take less than 1 microsecond (μs) for the first stage,
and 200μs for the second stage, over a 1000 image dataset which

1www.microsoft.com/robotics
2www.vis.uky.edu/\~stewe/ukbench/
3The results for the visual words approach were interpolated from
the graph at www.vis.uky.edu/\~stewe/ukbench/ and
are therefore inexact.

Table 1: Results of the localization experiment in multiple en-
vironments.

Environment Method Images Error rate
Design lab 50F 1S 1119 7.05%
Design lab 50F 2S 1119 4.46%
Design lab 100F 1S 1119 9.02%
Design lab 100F 2S 1119 2.68%

Home, morning 50F 1S 518 6.75%
Home, morning 50F 2S 518 4.44%

Home, night 50F 1S 456 10.3%
Home, night 50F 2S 456 6.79%

is the expected order of magnitude of datasets we expect for our
application.

9.2 Localization performance
The Kentucky benchmark checks the retrieval of images associ-

ated with objects. To check whether our method properly identifies
the location from which images were captured, we used a different
test. We captured a topology in two environments — a design lab,
built to mimic a real apartment, and the home of one of the authors.
The two environments are sketched in Figure 2. In both environ-
ments we captured a topology consisting of 7 distinct locations and
edges between adjacent locations.

(a) Design lab sketch (b) Home sketch

Figure 2: Sketches of the environments used in the experi-
ments.

We then split the captured images into a train and test set, by
moving every other image into a test set, learning a topology only
for the remaining images. Then, for every image in the test set, we
ran a query against the dataset. We computed how many times the
most likely state for each test image — maxs pr(o|s) — was the
location or edge where the image was captured, and compute the
classification error rate (Table 1).

While our results show a high classification accuracy, this exper-
iment does not properly evaluate our complete approach, because
in some cases even when the most likely state was incorrect, the
second most likely state was correct with minor probability differ-
ence.

9.3 Navigation performance
While image retrieval and localization are both key components

in our appearance based approach, we are interested in evaluating
the complete approach to localization and navigation. To evaluate
our approach, we ran experiments in the two environments. In both
environments we have captured a topology and instructed the robot

564



afterwards to move from one location to another multiple times.
Table 2 shows the success rate in the two environments. Overall,
we ran 30 tests, with a success rate of 86%.

As we can see, the performance in the design lab is optimal,
while in the real home the robot failed to reach the destination in
several cases. This is not surprising, because the design lab had
perfect floor conditions, where the robot wheels never slip, while
the home had varying floor texture — tiles, carpets, and wood —
where the robot occasionally gets stuck or spins too fast. Also,
the lab has no outside windows, and therefore has constant light-
ing conditions. The home experiment was conducted during a few
days, with varying outside conditions (from sunny to cloudy) and
therefore different lighting conditions.

These experiment hint that our mechanical design is not yet per-
fect, and that we would need a better driving system, and that vary-
ing lighting conditions add a level of difficulty. We can handle dif-
ferent lighting conditions by adding signatures to each image that
are indifferent to varying lighting.

Table 2: Results of path execution.
Environment Path Trials Success
Design Lab Entry ⇒ Snack bar 3 3
Design Lab Snack bar ⇒ Entry 3 3
Design Lab Snack bar ⇒ Corner desk 2 2
Design Lab Corner desk ⇒ Entry 2 2
Design Lab Entry ⇒ Corner desk 2 2
Design Lab Gray cabinets ⇒ Corner desk 3 3
Design Lab Corner desk ⇒ Gray cabinets 2 2

Home Office ⇒ Entry 5 4
Home Office ⇒ Piano 4 2
Home Office ⇒ Entry ⇒ Piano 4 3

As in this paper we only focus on reaching the goal, rather than
optimality, we do not report here the time or the length of the tra-
versed paths. We note, however, that in some cases the robot choose
a non-optimal path to the goal, and in some cases got disoriented
on the way and had to explore the current surrounding to re-localize
itself.

10. DISCUSSION AND FUTURE WORK
In our implementation we use a number of either ad-hoc or man-

ually tuned parameters. This is because we are interested in a real
application for a specific robot platform. An obvious next step is
to allow for generalization by learning such parameters online. In
practice, we would still need to begin with a reasonable model that
may contain many manually tuned parameters. However, we can
later learn to tune these parameters to achieve better performance.
Below we illustrate a number of suggestions for such improvements
that we intend to explore.

10.1 Learning transition probabilities
Currently, transition probabilities are manually tuned to fit the

domains and robots we experimented with, as learning the proba-
bilities from experience may require many trials, and we currently
aim at a robot that can be deployed very rapidly. However, learn-
ing these probabilities from trials is a viable alternative that will be
pursued in the future. An attractive hybrid approach would begin
with the hand-tuned probabilities, and will refine them by learning
from experience, optimizing the robot to the actual environment it
was deployed in. Also, our graph compaction approach assumes
that all components with identical relations behave similarly. This
does not allow us to learn that some edges are harder to traverse

than others, perhaps due to difficult curves. It is possible, however,
to learn relation-free transition probabilities. Again, such probabil-
ities would require significantly more trials before converging to a
reliable value.

10.2 Interactive learning of the environment
During the initial tour of the environment, it is possible that the

robot will pass several times through the same location, requiring
either that the human will explicitly specify that this is an existing
location, as our current implementation requires, or that the robot
will identify that it is passing through an existing location. The lat-
ter approach can be augmented by presenting question to the per-
son. For example, when the robot computes a high probability that
the current location was already visited it can ask the human “are
we in the kitchen?”. Such questions can ensure that the captured
topology is accurate.

10.3 Topology Refinement
While the topology that we currently capture, i.e. rooms and

corridors, may be easy for humans to understand and teach, it may
not be the best topology for navigation. For example, a human will
not identify a junction of two corridors as an important location,
but adding such a location can help the robot considerably during
navigation.

We could, however, use the captured paths to infer such junctions
of paths. If two edges start at the same location, we can trace the
similarity of the images, starting from the first image. If the two
paths have similar prefixes, we can decide to unify these prefixes,
causing a new location to be added to the graph where the two paths
becomes distinct. We can apply this procedure iteratively until no
new locations are found.

10.4 Learning new paths
As we intend the teaching phase to be minimal, we do not expect

that every two locations will be connected by a path. However, we
can later learn new paths to enrich the graph. We suggest a sim-
ple exploration heuristic, that starts at a given location, and moves
towards the open spaces, while trying to move away from its origin.

While executing this exploration heuristic, it is likely that we
will eventually reach some known location. If we record the images
that were observed during the exploration, we can insert a new path
into the graph, from the origin location to the destination location.
These paths are not expected to be optimal, but as our exploration
heuristic tries to avoid loops, the paths obtained this way are in
many cases reasonable.

10.5 Learning new locations
Learning new meaningful locations in the closed environment is

less straight forward. First, in order for a location to be meaningful
it has to be labeled so that the robot can be commanded to go there.
Second, we assume that the human teacher will show the robot all
places of interest - (not true - in the case of an office environment
we would like the robot to learn all the offices without showing
them explicitly).

11. CONCLUSION
In this paper we have presented a complete approach to appearance-

based localization and navigation. We aim at low cost robots that
could be used by anyone, and therefore choose an infrastructure
consisting only of low cost components, such as a web cam, a depth
camera, and a standard computer. Even with our cheap machine ar-
chitecture, we have demonstrated an image identification system

565



with high precision, and a navigation system that robustly reaches
the destination.

Instead of eliminating the uncertainty in localization, we use a
partially observable Markov decision process to estimate the un-
certainty, and leverage this model to provide robust localization and
navigation.

Our approach is yet imperfect, mainly requiring additional engi-
neering for more robust driving mechanism, and additional work on
improving the image retrieval mechanism, as well as other stages
of our approach, such as the environment capturing phase.

In our implementation we use a number of either ad-hoc or man-
ually tuned parameters. This is because we are interested in a real
application for a specific robot platform. An obvious next step is
to allow for generalization by learning such parameters online. In
practice, we would still need to begin with a reasonable model that
may contain many manually tuned parameters. However, we can
later learn to tune these parameters to achieve better performance.
In the future we will explore such options for learning new paths
and locations, learning the transition probabilities, and topology re-
finement.

Still, our approach provides a robust localization and navigation
engine that can be used on robots with standard, affordable, hard-
ware.

12. REFERENCES
[1] Ronen Basri, Ehud Rivlin, and Ilan Shimshoni. Visual

homing: Surfing on the epipoles. Int. J. Comput. Vision,
33(2):117–137, 1999.

[2] Aeron Buchanan and Andrew Fitzgibbon. Interactive feature
tracking using k-d trees and dynamic programming. In
Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on, pages 626–633, 2006.

[3] Wolfram Burgard, Dieter Fox, Daniel Hennig, and Timo
Schmidt. Estimating the absolute position of a mobile robot
using position probability grids. In In Proceedings of the
Thirteenth National Conference on Artificial Intelligence,
Menlo Park, pages 896–901. AAAI, AAAI Press/MIT Press,
1996.

[4] Mark Cummins and Paul Newman. FAB-MAP: Probabilistic
Localization and Mapping in the Space of Appearance. The
International Journal of Robotics Research, 27(6):647–665,
2008.

[5] Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian
Thrun. Monte carlo localization for mobile robots. In IEEE
International Conference on Robotics and Automation
(ICRA99), May 1999.

[6] H. Durrant-Whyte and T. Bailey. Simultaneous localisation
and mapping (slam): Part i the essential algorithms. Robotics
and Automation Magazine, 13:99—110, 2006.

[7] Amalia Foka and Panos Trahanias. Real-time hierarchical
pomdps for autonomous robot navigation. In IJCAI
Workshop Reasoning with Uncertainty in Robotics, 2005.

[8] C. Harris and M. Stephens. A combined corner and edge
detector. In Proc. Fourth Alvey Vision Conference, pages
147–151, May 1988.

[9] Hongwen Kang, Alexei A. Efros, Martial Hebert, and Takeo
Kanade. Image matching in large scale indoor environment.
In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR) Workshop on Egocentric
Vision, June 2009.

[10] David Kortenkamp and Terry Weymouth. Topological
mapping for mobile robots using a combination of sonar and

vision sensing. In AAAI’94: Proceedings of the twelfth
national conference on Artificial intelligence (vol. 2), pages
979–984, Menlo Park, CA, USA, 1994. American
Association for Artificial Intelligence.

[11] Ben J. A. Kröse, Nikos A. Vlassis, Roland Bunschoten, and
Yoichi Motomura. A probabilistic model for
appearance-based robot localization. Image Vision Comput.,
19(6):381–391, 2001.

[12] David G. Lowe. Distinctive image features from
scale-invariant keypoints. International Journal of Computer
Vision, 60(2):91–110, 2004.

[13] J. Matas, O. Chum, U. Martin, and T. Pajdla. Robust wide
baseline stereo from maximally stable extremal regions. In
Proceedings of the British Machine Vision Conference, pages
384–393, 2002.

[14] Y. Matsumoto, K. Sakai, M. Inaba, and H. Inoue. View-based
approach to robot navigation. In Intelligent Robots and
Systems IROS, pages 1702–1708, November 2000.

[15] Krystian Mikolajczyk and Cordelia Schmid. An affine
invariant interest point detector. In Proc. European Conf.
Computer Vision, pages 128–142. Springer Verlag, 2002.

[16] Monica N. Nicolescu and Maja J Mataric. Experience-based
representation construction: Learning from human and robot
teachers. In In Proc., IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, pages 740–745, 2001.

[17] D. Nistér and H. Stewénius. Scalable recognition with a
vocabulary tree. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), volume 2, pages
2161–2168, June 2006.

[18] Aude Oliva and Antonio Torralba. Building the gist of a
scene: the role of global image features in recognition. In
Progress in Brain Research, page 2006, 2006.

[19] J. M. Porta, J. J. Verbeek, and B. J. A. Kröse. Active
appearance-based robot localization using stereo vision.
Auton. Robots, 18(1):59–80, 2005.

[20] Emilio Remolina and Benjamin Kuipers. Towards a general
theory of topological maps. Artificial Intelligence,
152:47–104, 2002.

[21] Edward J. Sondik Richard D. Smallwood. The optimal
control of partially observable markov processes over a finite
horizon. OPERATIONS RESEARCH, 21(5):1071–1088,
1973.

[22] Edward Rosten, , Edward Rosten, and Tom Drummond.
Fusing points and lines for high performance tracking. In
Proceedings of the International Conference on Computer
Vision, pages 1508–1515. Springer, 2005.

[23] Matthijs T. J. Spaan and Nikos Vlassis. A point-based
POMDP algorithm for robot planning. In Proceedings of the
IEEE International Conference on Robotics and Automation,
pages 2399–2404, New Orleans, Louisiana, 2004.

[24] Georgios Theocharous, Khashayar Rohanimanesh, and
Sridhar Mahadevan. Learning hierarchical partially
observable markov decision process models for robot
navigation. In ICRA, pages 511–516, 2001.

[25] Iwan Ulrich and Illah Nourbakhsh. Appearance-based place
recognition for topological localization. In Proceedings of
ICRA 2000, volume 2, pages 1023 – 1029, April 2000.

[26] Andrew D. Wilson. Depth-sensing video cameras for 3d
tangible tabletop interaction. In Horizontal Interactive
Human-Computer Systems, International Workshop on,
pages 201–204, 2007.

566


